Machine Learning-Based Identification of Suicidal Risk in Patients With Schizophrenia Using Multi-Level Resting-State fMRI Features

Bartosz Bohaterewicz , Anna Sobczak , Igor Podolak , Bartosz Wójcik , Dagmara Mętel , Adrian Chrobak , Magdalena Fafrowicz , Marcin Siwek , Dominika Dudek , Tadeusz Marek

Abstract

Background: Some studies suggest that as much as 40% of all causes of death in a group of patients with schizophrenia can be attributed to suicides and compared with the general population, patients with schizophrenia have an 8.5-fold greater suicide risk (SR). There is a vital need for accurate and reliable methods to predict the SR among patients with schizophrenia based on biological measures. However, it is unknown whether the suicidal risk in schizophrenia can be related to alterations in spontaneous brain activity, or if the resting-state functional magnetic resonance imaging (rsfMRI) measures can be used alongside machine learning (ML) algorithms in order to identify patients with SR. Methods: Fifty-nine participants including patients with schizophrenia with and without SR as well as age and gender-matched healthy underwent 13 min resting-state functional magnetic resonance imaging. Both static and dynamic indexes of the amplitude of low-frequency fluctuation (ALFF), the fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity as well as functional connectivity (FC) were calculated and used as an input for five machine learning algorithms: Gradient boosting (GB), LASSO, Logistic Regression (LR), Random Forest and Support Vector Machine. Results: All groups revealed different intra-network functional connectivity in ventral DMN and anterior SN. The best performance was reached for the LASSO applied to FC with an accuracy of 70% and AUROC of 0.76 (p < 0.05). Significant classification ability was also reached for GB and LR using fALFF and ALFF measures. Conclusion: Our findings suggest that SR in schizophrenia can be seen on the level of DMN and SN functional connectivity alterations. ML algorithms were able to significantly differentiate SR patients. Our results could be useful in developing neuromarkers of SR in schizophrenia based on non-invasive rsfMRI.
Author Bartosz Bohaterewicz (Wydział Psychologii w Warszawie)
Bartosz Bohaterewicz,,
- Wydział Psychologii w Warszawie
, Anna Sobczak
Anna Sobczak,,
-
, Igor Podolak
Igor Podolak,,
-
, Bartosz Wójcik
Bartosz Wójcik,,
-
, Dagmara Mętel
Dagmara Mętel,,
-
, Adrian Chrobak
Adrian Chrobak,,
-
, Magdalena Fafrowicz
Magdalena Fafrowicz,,
-
, Marcin Siwek
Marcin Siwek,,
-
, Dominika Dudek
Dominika Dudek,,
-
, Tadeusz Marek
Tadeusz Marek,,
-
Journal seriesFrontiers in Neuroscience, ISSN 1662-453X, (N/A 100 pkt)
Issue year2021
Vol14
No605697
Pages1-11
Publication size in sheets0.5
Keywords in Englishschizophrenia, suicidal ideations, machine learning, resting state fMRI, mental pain, classification, gradient boosting, feature selection
DOIDOI:10.3389/fnins.2020.605697
Languageen angielski
File
Machine Learning-Based.pdf 1.26 MB
Additional file
Osw_Bohaterewicz.pdf 106 KB
Score (nominal)100
Score sourcejournalList
Publication indicators WoS Impact Factor: 2018 = 3.648 (2) - 2018=4.371 (5)
Citation count*
Cite
Share Share

Get link to the record


* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.
Back
Confirmation
Are you sure?